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A B S T R A C T  

A probabi l i ty  m e a s u r e  D on a locally compac t  a" - compac t  amenab l e  Hans-  

dorff  g roup  G is called mix ing  by convolut ions  if for every pair  of  proba-  

bilities v l ,  ~2 on G we have:  

lim II(vx - ~ 2 ) * ~ * ' ~ 1 1  = l im I1~ *~ * ( v i  - ~2)11 = 0.  
~ o o  t t ~ o o  

It is proved that the set of all mixing by convolutions probabili- 
ties is a norm (variation) dense subset of the set P(G) of all probabilities 
on G. If G is additionally second countable the mixing measures are 
residual in P(G). 

1 .  I n t r o d u c t i o n  

Let G be a locally compac t  a - c o m p a c t  amenable  Hausdorf f  g roup  wi th  a fixed 

left Haax measure  A. The  Banach  lat t ice (a lgebra  wi th  the convolut ion *) of  

all real finite regular  Borel measures  on G is denoted by M(G).  For  a measure  

v E M(G),  [Iv[[ is the to ta l  var ia t ion no rm and Iv I is the modu lus  of u. The  

convex, convolut ion semigroup of all regular  probabil i t ies  on G is denoted by 
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P(G). Similarly, for every closed K C_ G, P(K) is the set of all probabilities # 

with supp(tt) C K. The set of all probabilities with compact support is denoted 

by Pc(G). As usual Cb(G) denotes the Banach space of all bounded contionuous 

real valued functions on G with the supremum norm. We shall consider P(G) as 

a topological space with respect to two topologies. The first is the one inherited 

from the Banach lattice M(G) with the total variation norm. The second one is 

the weak topology i.e. the topology with base sets: 

= E P(O) :  I f / i d a -  / Sid.I <  j,j = 1,..., k} 

where fl, . . . ,fk are from Cb(G) and el, ...,¢k are positive numbers. 

It is well known that if G is a polish group (metrizable separable and complete) 

then P(G) with the weak topology is a polish space as well. In particular P(G) is 

a Baire space then (see [P] for the details). We recall that every locally compact 

second countable Hausdorff group is a polish group (see Theorem 8.3 in [H-R 1]). 

By £ (L  1 (A)) we denote the Banach algebra of linear bounded operators on L l(zk) 

the Banach (convolution) algebra of all real finite signed measures absolutely 

continuous with respect to A. An operator T E £(LI(A)) is called s toehas t l e  

if: r(y) _> 0 and IIT(Z)II = Ilfll for all nonnegative f E LI(A). The set of all 

stochastic operators is denoted by S. An important class of stochastic operators 

is the class of eonvolution operators. Recall, that for a probability measure/t  on 

G, the operator Ll(,k) 9 f ~ Tu(f) = f * I~ is called a r ight  convo lu t ion  

o p e r a t o r  (t,T(f) = t t ,  f is called a left convolu t ion  opera tor ) .  

The importance of convolution operators is commonly recognized because of 

their coherence with the Markov processes on groups. Every "time-space" homo- 

geneous Markov process (random walk) {~,,},,>0 is represented by some stochas- 

tic convolution operator. More precisely if {~n},>0 is such a Markov process, 

with transition probabilities P(g, A) = tz(g-~A), then for every natural n and an 

initial distribution f E P(G) n LI(A) one has 

P/(~,, E A) = /a T~(f)d)~ = fA T~,,.(f)dA 

where A is a Borel subset of G. In this paper some concepts of asymptotic be- 

haviour of random walks on amenable groups are investigated. We consider the 

iterates T~(f) or j,T"(f) and study their dependence on the initial density f .  

The set of measures # E P(G) for which the distributions Tff(fl),  T~(f2) are 
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asymptotically close independently of the starting ones fl ,  f2 is the main subject 

of our considerations. There are three operator topologies in £(L ~ (X)) which 

are helpful in this task: the operator norm topology (o.n.t.), the strong opera- 

tor topology (s.o.t.), and the weak operator topology (w.o.t.). Using Wendel's 

Theorem (see [H-R 2]) it was noticed in [I-R] that the class of right (or left) con- 

volution operators is s.o.t. Baire. Let ML,, (respectively M,L, ) denote the set 

of all right convolution operators on L' (A) (left convolution operators on L' (A)). 

According to [I-R] and [R l the operator T, 6 ML1, (or j,T 6 M, LI ) is called 

n o r m  comple te ly  mixing if for each pair of probabilities vl, u2 6 LI($) 

( l r )  limoo IIT2(~,  - ~'~)11 = .li-~oo I1(", - ~z) * ~,*" II = 0 

(or (1,) limoo II,,T"(v, - ~=)11 = li~rnoo Ill,*" * (~, - ~=)11 = 0). 

The set of all norm completely mixing right (or left) convolution operators on 

Ll(A) is denoted by MIXL,, (or MIX, L, repectively). If T z 6 MIXL,, 
(or , T  6 MIX, L, ) we simply say that the probability /~ is r ight (left) L *- 

mixing by convolutions and denote the set of all such measures by mixL,, 
(or mix,L, ). A probability measure /~ on G is called L 1- mixing by 

convolutions if /~ 6 mixL,, Nmix,L, = mix(L~). It was proved in [RO] that 

there exists a right Ll-mixing by convolutions probability on a locally compact, 

Hansdorff group G if and only if G is a-compact and amenable. If G is ad- 

ditionally abelian and second countable, it was recently observed that MIX,L, 
is a dense Gs in M,L, in both the strong operator and the operator norm 

topologies (see Theorems 3 and 5 in [I-R]). It is our aim to extend this result of 

Iwanik and R~bowski to all amenable locally compact polish groups. 

In the first part of our paper a stronger version of mixing is considered. Namely 

a measure /~ 6 P(G) is called right (left) mixing by convolutions if for each 

pair of probabilities vl, u2 6 P(G) one has 

(2r) l i m o o l l ( v l - v 2 ) , ~ * n l l = 0  (o r  (2t) l i m o o l l ; ~ * " * ( v ~ - v ~ ) l l = 0 ) .  

The set of all probabilities on G satisfying (2r) (or (21) respectively) is 

denoted by mixM, (or mix,M). The intersection mixM, N miX,M is 

denoted by mix(M) and measures from the last set are called mixing by 

convolutions. Obviously the following inclusions hold: mixM, C_ mixLl,, 
mix,M C_ mix,L, and mix(M) C_. mix(L 1). Let us notice that these inclusions 
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are proper even for G to be the one dimensional torus. Indeed, the measure 
oo - -n  L 1 _ P = ~--~,,=1 2 / f~p(~)  is mixing by convolutions (see [L]) but for every 

irrational oJ E R and arbitrary natural n we have [[(/f,~p(2,~i~,) -/fl)*~,*"ll = 2, 

so p is not mixing by convolutions. 

We show that for every locally compact a -  compact Hausdorff and amenable 

group G the set mix(M) is large. Namely, by our Theorem 1, the norm variation 

closure of mix(M) is P(G). Applying this fact to the convolution operators 

we obtain that MIXLa, is norm operator dense in MLI,. Moreover if G 

is additionally second countable then MIXLI ,  is a G6 in the w.o.t. (so in the 

s.o.t, and the o.n.t, as well). 

Finally let us remark that P(G) with the variation norm topology and 

ML~, with the operator norm topology are homeomorphic (by the existence of 

an approximative unit in L1()0 they are isometric even). P(G) with the 

weak measure topology is homeomorphic with MLt, equipped with the weak 

or strong operator toplogy (for this fact we can use the Theorem 1.1.9 mid the 

Lemma 2.5.13 from [H]). 

C O N V E N T I O N :  All topological groups considered in this paper are at least 

locally compact a-compact Hausdorff and amenable. The measures are Borel 

and regular. 

2. Exis tence  and denseness  o f  mixing measures 

The following idea of mixing will be helpful in the sequel. Namely let an --* 0 be 

a sequence of positive numbers. Then, 

DEFINITION 1: A probability measure p on G is called right (left) mixing by 

convolutions with the rate an if for every compact set K C G there exists a 

natural number NK such that for each pair of probabilities v1, t'2 E P(K) and 

n >_ NK the following inequality 

(3~) ) [ (va  -v~)*~*nl[  ~ (or (3,) ] [~*n*(vl-v2)l l  ~ n )  holds. 

The set of all such probabilities is denoted by mixM,,a. (or by mix,M,a, respec- 

tively). 

Remark 1: Since Pc(G) is a norm variation dense subset of P(G) and the op- 

erators T# are contractions on M(G) we have mix.M,a. C_ mix,M, mixM,,~,. C_ 
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mixM, and mix (M) , .  C_ miz(M) , where mix(M)a.  = miz,M.~, f3 mixM,.a.. 

Let us notice that ~: M(G) --, M(G) defined as D(A) = #(A -~) is a linear 

isometry onto so (mixL,,  ) ~ = mix,Lt and (mi~M, ) ~ = miz,M. The mapping 

,~ is a homeomorphism of P(G) in the weak measure topology as well. Hence it 

is justifiable to consider only the right mixing, l 

Recall (see [E-G] and [E]) that the amenability of G is equivalent to the fol- 

lowing Emerson condition: for every e > 0 and every compact set K C G there 

exists a compact symmetric set S C G with 0 < A(S) < +co such that for all 

g E K we have A(gSAS) < cA(S) where A denotes the symmetric difference. 

The following Lemma 1 reformulates the above condition somewhat. 

LEMMA 1: Let K be a compact subset of the group G. For every e > 0 there 

exists a symmetric, compact set Sg,e such that if t,1, u2 E P( K) then 

(4) II(v, - v2) * xsK,. II -< ~A(SK,.) .  

Proof: Let SK, e be a symmetric, compact set from the Emerson's characteriza- 

tion with ~ instead of e and Xsr,, be its characteristic function. Then 

,(,,, - ,,~), x~,, . ,  = / I / ~ . , , . .  o,- '=) d( , , , -  "2)(y)l '~'(~') 

= / I / ( x ~ , . . ( y - ' ~ ) -  x~,,. (x)) d(,., - ,.~)(y)l dA(x) 

.i.,. Ix.,<,. (x)- (=)l dA(x) 

= fK ) ~ ( y . - q K . , A S g . , )  dlv, - " , l ( u )  -< ~(SK.,). 

For a compact set K C_ G and positive e let RK,e (LK, e) denote the set of all 

probabilities # E Li(A) such that (4r)II(~]- ~ ) * ~ l l  < ~ ( o r ( 4 , ) l l ~ * ( v ,  1 ~ ) l l  < 

respectively) for all ul, v2 E P(K). 

By Lemma 1 the set RK,~ is nonempty. Clearly it is closed in the L 1 norm and 

convex. Notice that LK,, = (RK-~,e) ~, so the set LK,e has same property. If 

K is compact and symmetric then # E RK,~ if and only if/~ E LK, e. 

Notice that RK,. * P(G) C RK, e and P(G) * LK,e C Lr,e so the set (5) 

BK,~ = RK,~ N LK,~ is nonempty (it contains RK,. * LK, e). The following three 

inclusions will be useful in the sequel: (6r)Rg~,.~ C_ RKI,.I, (61)LK2,.2 _C LK,,.: 

and (6) Bh'2,,2 C_ BK,,e~ for K2 _.3 Kl and e2 _< el. 
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Now we introduce a class .4 of positive sequences ( a . )  converging to 0 with 

the following property: there exists a decreasing to 0 sequence 0 < r .  _< 1 such 

that for every 0 < ~ _< 1 

(7) lim ( 1  - e r . -1  )" = 0 .  
n - - * o o  Og n 

It is rather  an elementary fact that the class .4 coincides with 

{ ( a , )  : 30<a<1 3~-o with nA, ~ c~ such that a ,  = anX"}. 

The following Theorem 1, which is the main result of our paper is a gener- 

alization of the Theorem 1.10 from [R]. The first phrases of our proof can be 

recognized as some pieces of Rosenblatt 's proof. However for the reader's conve- 

nience and the completeness of the paper a full proof is given here. Moreover, 

our approach to this problem seems to be more natural and effective than the 

one presented in [RO]. We remark that,  in the abelian case, if a measure ~u0 is 

mixing by convolutions then for every 0 < ~ < 1 and probability measure # 

on G the convex combination (1 - e)/~ + e#0 is mixing by convolutions (for 

LLmix ing  we may apply results from IF] or [L]). In the following Theorem 1 only 

the amenability and a-compactness of G are assumed to obtain a similar result. 

Namely we prove that for some measure #0 on G any convex combination 

(1 -e ) /~+e#0  belongs to mix(M)a,  if # is a compactly supported probability 

on G ,  0 < e < 1 and (an) 6 .A. In particular the norm denseness of 

mix(M),~, in P(G) is easily seen. 

THEOREM 1: For every ( a , )  6 .4 there exists an absolutely continuous, 

symmetric measure I~o ( i.e.~o = Po ) such that for every 0 < e < 1 

and I~ 6 Pc(G) the measure (1 - e)/~ + e/~0 belongs to mix(M)~,.. 

Proof: By the a-compactness of G we may choose an increasing sequence of 

symmetric compact sets D ,  C_ G such that [.J,~=~ In t (O, )  = G. Assume 

the neutral element of G belongs to D1 . Let (7-) be a decreasing to 0 sequence 

of positive numbers such that 0 < 7,~ < 2 - " ~ -  • We begin by constructing 

(inductively) two sequences of compact symmetric sets K ,  , S ,  _C G . We set 

K1 = D1 and $1 = SK,,-rl. If K 1 , K 2 , . . . , K , - 1  and $1,  $ 2 , . . . ,  S , -1  

are given we define 

Kn = K.-I U D.(D. U $ISI U... U S.-IS.-I) n-1 

U (D. U S,S ,  U... U S.-ISn-I)n-IDn 
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and  S .  = SK. , - t . .  Now let r0 = 1 and r .  \ 0 be such that (7) holds. 

The sets K .  are symmetric and so by Lemma 1 and the properties gathered 

in (5) and (6) we have: for all n > _ l  

Xs. . ( ~ .  ~ _ f~-:) "A(S.)" d ~ .  E BK°,7.. 

We show that the measure /to = ~-'~n¢¢__1 ( r n - 1  --  rn)/ tn satisfies the property 

described in the statement of our Theorem 1. Let /t , Vz , v2 E Pc(G)  be 

arbitrary and N be such that for all n > N the inclusion s u p p  ( / t  + Vl + u2 ) C_ 

D .  holds. For a fixed 0 < c < 1 we introduce the following notations: 
B - - 1  OO 

P.,0 = (1 - c)/t + c E j = ,  (v j -1  - r j ) / t j  and  p . , ,  = ¢ E j = n ( r j - i  - rj) / t j .  

Clearly liP-,011 = z - ~ . _ ~  IIp.,all = cr ._z  and ~ E RK.,-~. (the last 
' e r n -  1 

easily follows from the properties (5) and (6) and the fact that the sequence 7-  

is decreasing and Kn is increasing). Now let us start to estimate: 

c .  = I1( ~z - ~ ) * ( (1 - c ) / t  + c/to )*"11 

: t l  (~1  - ~ )  * ( p . , o  + p. , ,  )*" I1 
n 

-< II (~'~ - ,'= ) * p*.,,"o II + II (~'~ - ~'=) * ~ ~ p,,,~, * ... * p,,,~. II 
j = l  qt +q2+...+qn=j 

_< 211 p.,o II" + ~ ~ I1( v~ - v2 ) • p.,q= * . . . *  p,,,q. II 
j = ]  q~+q2+ . . .+q .= j  

The first term in the last inequality is exactly 2(1 - o r . _ 1 )  n and the second 

term can be estimated by 

, j  
2" ~=po<¢<.  I1( va - v2 ) * p.,o * p-,all 

pn,1 
<_ 2 n SUpr, ,r .EP(K.)  Crn-1 II(r ,  - r e ) *  

Crn--, 

O~ n 
II ~ 2"r._1~-~ = rn-lOZn 

Pn 0 ~ j  (notice that  vk * ( ~ )  are supported on K n  , here k = 1 , 2 , 0 _< 

j < n and n > N ). Finally, for N large enough, we have for 

1 1 and en < an all n > N 2 ( I -  Crn_l )  n < j a n  , r n - I  < ~ 

Consequently, (1 - e)/t + c/t0 E m i x M . , ~ . .  It can be shown analogously 

that (1 - c)/t + /t0 E m i z . M , ~ ,  so the proof of the Theorem 1 is completed. 

I 
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Remark 2: We notice that if the measure # (in Theorem 1) is taken to be 

absolutely continuous,  then the convex combination (1 - e)p + ep0 is again 

absolutely continuous. In particular the set mix(M) N Lt(A) is norm dense in 

P(G) N L ~ (A) as well. Now the following Corollary 1 is a simply consequence 

of our Theorem 1. | 

COROLLARY l: For any (~,)  E ,4 we have : mix(M)~,  II II = P(G) and 

mix(M)~,  N LI(A) "11 II = P(G) n LI(A). 

Remark 3: The rate of convergence of II(vx - vz) * ~ 0 which can be 

obtained using our Theorem 1 is not exponential, but it seems to be fast enough 

from the probabilistic point of view. For instance if an = a nx" where 0 < a < 1 

and ~ ~ + ~  then for every # E mix(M)a,  and a compact subset K C_ G 

we have 

Z suPu"v2EP(K) nkll(vl - < 

In order to check it we notice that o¢ < oo. E n = l  nkOtn I 

3. Residuality of mixing measures 

Assume that G is an amenable locally compact polish group. Obviously we have 

the following representation of right L 1- mixing by convolutions measures: 

1_} 
(st) mix  " = N N N  U p(c): < 

m 
I,k m N n> N 

where {vl, v2, . . .  } is an L 1 norm dense subset of P(G) n LI(A). From this it is 

easily seen that mixLt ,  is a weak G6 in P(G). A similar representation (St) for 

mix,Lt shows that the set of left Ll-mixing by convolutions measures is also a 

weak G6. In particular mix(L 1 ), as the intersection of two G6- sets is a weak G6. 

Now we are in position to formulate the following category result. 

THEOREM 2: For every locedly compact, amenable and polish group G we have: 

(9) mix(L ~) is a dense G~ in P(G) /'or both the weak and the variation norm 

topoIogJes on P(G) and (10) mix(L 1 ) n L~(,~) is a dense G~ in P(G) n LI(,~)/'or 

the L l-norm topology. 

Proof: It was noticed in the Corollary 1 that mix(L 1 ) and mix(L 1) n L I(A) are 

dense subsets for these topologies. The proof that they are Gs-sets was presented 

just before the fornmlation of this Theorem. | 
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Remark 4: We do not consider the residuality of mix(L 1) N LI(A) in the weak 

topology since P(G) Cl LI(A) can be meager in itself for this topology. In fact, 

assume that Un C G is a decreasing sequence of dense and open subsets of G 

with A(V,,) "N 0 and let F,, = {g E P(G) NLI(A) : g ( G \ 0 n )  > a _ ~}. 

Clearly every set Fn is closed in the weak topology on P(G) N LI(A). Since 

U,, is dense and open it follows from Theorem 6.3 in [P] that the absolutely 

continuous measures with supports in U,, are weakly dense in P(G). This means 

that P(G)NLa(A) ~ F. = Un=l ,, is a space of the first category. The next Corollary 

2 elucidate this case quite thoroughly. I 

COROLLARY 2 : Let G be an amenable locally compact polish group and denote 

by Ps( G) the set ofa/ l  singular (with respect to the Haar measure) probabilities 

on G. / / ' the topology on G is not discrete then mix(L1)NPs(G) contains a weak 

dense G6. 

Proof: It is sufficient to notice that Ps(G) contains a weak dense G6. As in the 

Remark 4 we choose a decreasing sequence of dense and open sets Un C G with 

A(Un) x~ 0. The set of all probabilities on G with nonzero absolutely continuous 

component is included in the countable un ion  U7_-1Un°°_-I Fk,n where 

1 
Fk,n = { O e P(G) : o(G\Un) >_ ~ } 

are weakly closed and nowhere dense. Obviously the following inclusion 

N (P(a) \ Fk,.)c_ Ps(a) 
k=l n----1 

holds. Since P(G) with the weak topology is a polish space mix(L ~) Cl Ps(G) 
contains a dense weak a s  of the form mix(L') f) Nk~=, Nn~__, (P(G) \ Fk,,). I 

The results obtained in this note are usefull in creating Ll-mixing by convo- 

lutions measures with some additional properties. The following Corollaries are 

good examples of this. Let us recall (see [P], Definition 4.1) that a probability 

measure # on a group G is indecomposable if there do not exist two nondegener- 

ate (not gg where g E G) probabilities #1 , #2 with # = /~1 * #2. Assume that 

G is an infinite polish group. Then the set of all indecomposable probabilities 

on G (denoted by PI(G)) is a dense G6 in P(G) in the weak topology. If in 

addition G is uncountable then a weak dense G~ is the set Px,1 of all nonatomic 

and indecomposable probabilities (see [P], Theorems 4.3 and 4.4). 
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COROLLARY 3: Let G be an intlnlte locally compact polish amenable group. 

Then : (11) mix(L 1) n PI(G) is a weak dense G6 in P(G) and (12) if G is in 

addition uncountable then mix(L ~) n Pt,~(G) is a weak dense G6 in P(G). 

The next result is a simple application of (10) and Theorem 12.1 from [P]. 

COROLLARY 4:  F o r  every locally compact, noncompact abelian polish group G 

the set e d  G) n mix( L ' ) N L ~ (A) is a dense G6 in P( G) n L ~ (A) for the L l-norm 

topology. 

We finish our consideration with the following Theorem 3 which provides an 

affirmative answer to a question raised by A.Iwanik. 

THEOREM 3: Let G be a locadly compact, second countable, Hausdorff amenable 

group. Then M I X L , ,  (and MIX,L ,  ) is a dense G6 in M L,, (M,L t respectively) 

in the operator norm, the strong operator and the weak operator topologies. 

Proof: By Theorem 8.3 of [H-R 1] G is completely metrizable and separable, 

and therefore polish. Since ML1, is homeomorphic to P(G) with respect to the 

appropriate topologies, an application of Theorem 2 yields the desired result. 
| 

We end our paper with the following three Remarks. 

Remark 5: If G is not second countable we may not represent mixLx , and 

m i x M ,  as in (8r). However for the norm variation topology these sets are still 

dense G6- sets. It follows from the following representations: 

oo co oo 

m 
! : 1  m : l  N : I  n>_N 

and 

i----1 m----1 N = I  n > N  

I 

Remark 6: It is noticed in [RO] (see p.37) that for a a-compact locally compact 
amenable and unimodular  Hausdorff  group G there exists f ~ L 1 (,~)n P(G) such 

tha t  for all hi ,  hz ~ L1(A) n P(G) we have 

limoo II(ha - h 2 ) .  f*"  II - l i r a  IIf*" * (hi - h2)ll = 0. 
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Our Theorem 1 shows that the unimodularity assumption was not essential. 

Moreover Rosenblatt 's existence result is now replaced by the denseness of such 

measures (and if G is in addition second countable, by our Theorem 2 such 

measures form a norm dense G~ subset of LI(A) Cl P(G)  even). II 

Remark  7: Recently, the author has been informed that similar result to our 

Theorem 1 was obtained by R. R~bowski. It is proved in [R] that for any second 

countable, locally compact, and nilpotent group G if # E rn izL , ,  is spread out 

then for any positive 0 < e _< 1 and any v E P(G)  the convex combination 

kt~ = e/~ + (1 - e)u is right Ll-mixing by convolutions. | 
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